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Abstract

This paper describes automatic tech-
niques for mapping 9611 entries in a
database of English verbs to Word-
Net senses. The verbs were initially
grouped into 491 classes based on syn-
tactic categories. Mapping these verbs
into WordNet senses provides a re-
source that may be used for disam-
biguation in multilingual applications
such as machine translation and cross-
language information retrieval. Our
techniques make use of (1) a training
set of 1791 disambiguated entries, rep-
resenting 1442 verb entries from 167 of
the categories; (2) word sense proba-
bilities based on frequency counts in a
previously tagged corpus; (3) semantic
similarity of WordNet senses for verbs
within the same class; (4) probabilis-
tic correlations between WordNet data
and attributes of the verb classes. The
best results achieved 72% precision and
58% recall, versus a lower bound of
62% precision and 38% recall for as-
signing the most frequently occurring
WordNet sense, and an upper bound of
87% precision and 75% recall for hu-
man judgment.

1 Introduction

Our goal is to map entries in a lexical database
of 4076 English verbs automatically to Word-
Net senses (Miller and Fellbaum, 1991), (Fell-

baum, 1998) to support such applications as ma-
chine translation and cross-language information
retrieval. For example, the verb drop is multi-
ply ambiguous, with many potential translations
in Spanish: bajar, caerse, dejar, caer, derribar,
disminuir, echar, hundir, soltar, etc. The lexical
database specifies a set of interpretations for the
verb drop, depending on its context in the source-
language (SL). Inclusion of WordNet senses in the
lexical database enables the selection of an appro-
priate verb in the target language (TL). Final se-
lection is based on a frequency count of Word-
Net senses across all semantic classes to which
the verb belongs—e.g., disminuir is selected when
the WordNet sense corresponds to the meaning of
drop in Prices dropped.

Our task differs from prototypical word sense
disambiguation (WSD) in several ways. First, the
words to be disambiguated are not tokens in a
text corpus, but entries in a lexical database. Sec-
ond, we take an “all-words” approach rather than a
“lexical-sample” approach (Kilgarriff and Rosen-
zweig, 2000): All words in the lexical database
“text” are disambiguated, not just a small number
for which detailed knowledge is available. Third,
we replace the contextual data typically used for
WSD with information about verb senses encoded
in terms of thematic grids and lexical-semantic
representations from (Olsen et al., 1997). Fourth,
whereas it is often assumed that only one word
sense is accurate for each token in a text cor-
pus, the absence of sentential context leads to a
situation where several WordNet senses may be
equally appropriate for a database entry. Indeed,
since distinctions between WordNet senses are of-



tenfine-grained(Palmer, 2000),it canbeunclear,
even in context, which of severalsensesis in-
vokedor evenif only onesenseis invoked.

Theverbdatabasecontainsmostlysyntacticin-
formation about its entries,much of which ap-
pliesat theclasslevelwithin thedatabase.Word-
Net, on theotherhand,is a significantsourcefor
information aboutsemanticrelationships,much
of which appliesat the “synset” level (“synsets”
are WordNet’s groupingsof synonymousword
senses).Mappingentriesin thedatabaseto their
correspondingWordNet sensesgreatly extends
thesemanticpotentialof thedatabase.

2 Lexical Resources

We useanexistingclassificationof 4076English
verbs, basedinitially on English Verbs Classes
and Alternations (Levin, 1993) and extended
through the splitting of someclassesinto sub-
classesandthe additionof newclasses.The re-
sulting 491 classes(e.g., “Roll Verbs,GroupI”,
which includesdrift, drop, glide, roll, swing) are
referredto hereasLevin+ classes. As verbsmay
beassignedto multipleLevin+ classes,theactual
numberof entriesin thedatabaseis larger, 9611.

Followingthemodelof (DorrandOlsen,1997),
eachLevin+ classis associatedwith a thematic
grid (henceforthabbreviated́ -grid), which sum-
marizesa verb’s syntacticbehaviorby specify-
ing its predicateargumentstructure. For exam-
ple, theLevin+ class“Roll Verbs,GroupI” is as-
sociatedwith the ´ -grid [th goal] , in whicha
themeanda goalareused(e.g.,Theball dropped
to theground).1 Each ´ -grid specificationcorre-
spondsto aGrid class. Thereare48Grid classes,
with aone-to-manyrelationshipbetweenGridand
Levin+ classes.

WordNet,thelexical resourceto which we are
mappingentriesfrom thelexicaldatabase,groups
synonymouswordsensesinto“synsets”andstruc-
turesthe synsetsinto part-of-speechhierarchies.
Ourmappingoperationusesseveralotherdatael-
ementspertainingto WordNet:semanticrelation-
shipsbetweensynsets,frequencydata,andsyn-
tacticinformation.

1There is also a Levin+ class“Roll Verbs, Group II”
which is associatedwith the µ -grid [th particle(down)],in
whicha themeandaparticle‘down’ areused(e.g.,Theball
droppeddown).

Seven semanticrelationship types exist be-
tweensynsets,including,for example,antonymy,
hyperonymy, and entailment. Synsetsareoften
relatedto ahalf dozenor moreothersynsets;they
mayberelatedtomultiplesynsetsthroughasingle
relationshipor may be relatedto a singlesynset
throughmultiple relationshiptypes.

Our frequencydatafor WordNetsensesis de-
rivedfrom SEMCOR—a semanticconcordancein-
corporatingtagging of the Brown corpus with
WordNetsenses.2

Syntactic patterns(“frames”) are associated
with eachsynset,e.g.,Somebody ssomething;
Something s; Somebody s somebodyinto
V-ing something.Thereare35 suchverbframes
in WordNetandasynsetmayhaveonly oneor as
manyasahalf dozenor soframesassignedto it.

Our mappingof verbs in Levin+ classesto
WordNetsensesreliesin part on therelationbe-
tweenthematicrolesin Levin+andverbframesin
WordNet.Both reflecthowmanyandwhatkinds
of argumentsa verb may take. However, con-
structinga direct mappingbetweeń -grids and
WordNet framesis not possible,since the un-
derlyingclassificationsdiffer in significantways.
Thecorrelationsbetweenthetwo setsof dataare
insteadviewedprobabilistically—asdescribedin
Section3.

Table1 illustratestherelationbetweeneachof
the resourcesabovefor the verb drop. In our
multilingualapplications(e.g.,lexicalselectionin
machinetranslation),the Grid information pro-
videsacontext-basedmeansof associatingaverb
with a Levin+ classaccordingto its usagein the
SL sentence.TheWordNetsensepossibilitiesare
thuspareddownduringSL analysis,butnotsuffi-
cientlyfor thefinal selectionof aTL verb.Forex-
ample,Levin+ class9.4hasthreepossibleWord-
Netsensesfor drop. However, theWordNetsense
8 is not associatedwith anyof the otherclasses;
thus,it is consideredtohaveahigher“information
content” thanthe others. The upshotis that the
lexical-selectionroutine prefersdejar caer over
other translationssuch as derribar and bajar.3

2For further informationseetheWordNetmanuals,sec-
tion 7, SEMCOR athttp://www.cogsci.princeton.edu.

3This lexical-selectionapproachis an adaptationof the
notion of reductionin entropy, measuredby information
gain (Mitchell, 1997). Using informationcontentto quan-
tify the “value” of a classin the WordNet hierarchyhas



Levin+ Grid/Example WN Sense SpanishVerb(s)
9.4
Directional
Put

[ag th mod-locsrcgoal]
I droppedthestone

1. move,displace
2. descend,fall, godown
8. dropsetdown,put down

1. derribar, echar
2. bajar, caerse
8. dejarcaer, echar, soltar

45.6
Calibratable
Changeof
State

[th]
Pricesdropped

1. move,displace
3. decline,godown,wane

1. derribar, echar
3. disminuir

47.7
Meander

[th srcgoal]
The river droppedfrom
thelaketo thesea

2. descend,fall, godown
4. sink,drop,dropdown

2. bajar, caerse
4. hundir, caer

51.3.1
Roll I

[th goal]
The ball droppedto the
ground

2. descend,fall, godown 2. bajar, caerse

51.3.1
Roll II

[th particle(down)]
Theball droppeddown

2. descend,fall, godown 2. bajar, caerse

Table1: RelationBetweenLevin+ andWN Sensesfor ‘drop’

Theotherclassesaresimilarlyassociatedwith ap-
propriateTL verbsduring lexical selection:dis-
minuir (class45.6),hundir (class47.7),andbajar
(class51.3.1).4

3 Training Data

We beganwith the lexical databaseof (Dorr and
Jones,1996),whichcontainsasignificantnumber
of WordNet-taggedverbentries.Someof theas-
signmentswerein doubt,sinceclasssplittinghad
occurredsubsequentto thoseassignments,with
all old WordNetsensescarriedover to newsub-
classes.New classeshadalsobeenaddedsince
the manualtagging. It was determinedthat the
tagging for only 1791 entries—including1442
verbsin 167classes—couldbeconsideredstable;
for theseentries,2756 assignmentsof WordNet
senseshad beenmade. Data for theseentries,
takenfrom both WordNet and the verb lexicon,
constitutethetrainingdatafor thisstudy.

The following probabilities were generated
from thetrainingdata:

alsobeenusedfor measuringsemanticsimilarity in a tax-
onomy(Resnik,1999b).Morerecently, context-basedmod-
els of disambiguationhavebeenshownto representsignif-
icant improvementsover thebaseline(BangaloreandRam-
bow, 2000),(Ratnaparkhi,2000).

4The full set of Spanishtranslationsis selectedfrom
WordNetassociationsdevelopedin theEuroWordNeteffort
(Dorr etal., 1997).

¶¸·�¹]ºg»_¼B¹"½/¾U¿F¾dºgÀoº|ÁaÂ�Ã Ä Å Æ
Ç3È5É�ÊUËÍÌ*Ê>ÎaÏ#ÅÅ ÆÍÇkÈhÏ#Å ,
where eachoccurrenceof Ð Ã involves relating
synsetÑ�Ò throughrelationshiptype Ó to another
synsetÑ"Ô , andwhereÑ�Ò is mappedto by averbin
Grid classGÒ and Ñ�Ô is mappedto by a verb in
Grid classGÔ . This is the probability that if one
synsetis relatedto anotherthrougha particular
relationshiptype, thena verbmappedto thefirst
synsetwill belongto thesameGrid classasaverb
mappedto the secondsynset. Computedvalues
generallyrangebetween.3 and.35.

¶BÕ;Öy×Bº~ØGÙÚ¼B¹"½/¾U¿F¾dºgÀoº|ÁaÂ Ã Ä Å ÆÍÇkÈ5É`Û�Ü Ë Ì�Û�Ü Î Ï#ÅÅ ÆÍÇ È Ï#Å ,
where Ð Ã is asabove,exceotthatsÒ is mappedto
by a verb in Levin+ classL+ Ò andsÔ is mapped
to by a verb in Levin+ classL+ Ô . This is the
probabilitythatif onesynsetis relatedto another
through a particular relationship type, then a
verb mappedto the first synsetwill belong to
the sameLevin+ classas a verb mappedto the
secondsynset.Computedvaluesgenerallyrange
between.25and.3.

¶�Ý0½FÁ0Þ�¹"¿/ß�Ö�¼B¹"½*¾\¿F¾dºgÀoºàÁ(Â�áoâ ãäÄ Å Æ�å3æèç édÉ�êìëàíkç é(Ï#ÅÅ Æ�å3æèç é(Ï#Å ,
where î áoâ ï is theoccurrenceof theentire î -grid ð
for verbentry ñ andcfãÍâ ï is theoccurrenceof the
entireframesequenceò for a WordNetsenseto
which verbentry ñ is mapped.This is the prob-
ability thata verbin a Levin+ classis mappedto
a WordNetverbsensewith somespecificcombi-



nationof frames.Valuesaverageonly .11, but in
somecasestheprobabilityis 1.0.

ó�ô"õ>ö\÷�øÍù"ú/û�ü�ýdù"þ*ÿ\úFÿ����������
	�� ���� ������� �
������� � ��!"�� ������� �#!"� ,
where $ 	�� % is the occurrenceof the single $ -grid
component& for verbentry ' andcf�(� % is theoccur-
renceof thesingleframe) for aWordNetsenseto
which verbentry ' is mapped.This is theproba-
bility thata verb in a Levin+ classwith a partic-
ular $ -grid component(possiblyamongothers)is
mappedto a WordNetverbsenseassigneda spe-
cific frame(possiblyamongothers).Valuesaver-
age.20,but in somecasestheprobabilityis 1.0.

ó+*�ù,�|þ*ù.-0/ ýdù�þ/ÿUúFÿ1�������#�324 � �(5�67!8�� �(5 � !"� , where9;: isanoccurrenceof tag < (for aparticularsynset)
in SEMCOR and 9 % is anoccurrenceof anyof aset
of tagsfor verb ' in SEMCOR, with < beingone
of thesensespossiblefor verb ' . Thisprobability
is the prior probabilityof specificWordNetverb
senses.Valuesaverage.11, but in somecasesthe
probabilityis 1.0.

In addition to the foregoing data elements,
basedon the training set, we also madeuseof
a semanticsimilarity measure,which reflectsthe
confidencewith which a verb,giventhe total set
of verbsassignedto its Levin+ class,is mapped
to a specificWordNetsense.This representsan
implementationof a classdisambiguationalgo-
rithm (Resnik,1999a),modifiedto runagainstthe
WordNetverbhierarchy.5

We also made a powerful “same-synsetas-
sumption”: If (1) two verbsareassignedto the
sameLevin+ class,(2) one of the verbs '>= has
beenmappedto aspecificWordNetsense< = , and
(3) theotherverb '>? hasaWordNetsense<@? syn-
onymouswith <@= , then ' ? shouldbemappedto < ? .
SinceWordNetgroupssynonymousword senses
into “synsets,” < = and <@? would correspondto
thesamesynset.SinceLevin+ verbsaremapped
to WordNetsensesvia their correspondingsynset
identifiers, when the set of conditionsenumer-
atedabovearemet,thetwo verbentrieswouldbe
mappedto thesameWordNetsynset.

5Theassumptionunderlyingthis measureis that theap-
propriateword sensesfor a group of semanticallyrelated
words should themselvesbe semanticallyrelated. Given
WordNet’s hierarchicalstructure,thesemanticsimilaritybe-
tweentwo WordNetsensescorrespondsto thedegreeof in-
formativenessof the most specificconceptthat subsumes
themboth.

As an example,the two verbs tag and mark
havebeenassignedto thesameLevin+ class.In
WordNet, eachoccursin five synsets,only one
in which they both occur. If tag hasa WordNet
synsetassignedto it for theLevin+classit shares
with mark, andit is thesynsetthatcoverssenses
of both tag andmark, we cansafelyassumethat
that synsetis alsoappropriatefor mark, sincein
thatcontext,thetwoverbsensesaresynonymous.

4 Evaluation

Subsequentto theculling of thetrainingset,sev-
eral processeswere undertakenthat resultedin
full mappingof entriesin the lexical databaseto
WordNetsenses.Much, but not all, of this map-
pingwasaccomplishedmanually.

Each entry whoseWordNet senseswere as-
signedmanuallywasconsideredby at leasttwo
coders,onecoderwhowasinvolvedin theentire
manualassignmentprocessandthe otherdrawn
from a handfulof codersworking independently
on differentsubsetsof the verb lexicon. In the
manualtagging,if a WordNetsensewasconsid-
eredappropriatefor a lexical entryby anyoneof
thecoders,it wasassigned.Overall,13452Word-
Netsenseassignmentsweremade.Of these,51%
wereagreeduponby multiplecoders.Thekappa
coefficient ( A ) of intercoderagreementwas .47
for a first roundof manualtaggingand(only) .24
for a secondroundof moreproblematiccases.6

While the full taggingof the lexical database
maymakethe automatictaggingtaskappearsu-
perfluous, the low rate of agreementbetween
codersand the automaticnatureof someof the
tagging suggestthere is still room for adjust-
mentof WordNetsenseassignmentsin the verb
database.On the one hand,eventhe higher of
thekappacoefficientsmentionedaboveis signifi-
cantlylowerthanthestandardsuggestedfor good
reliability ( ACBEDGF ) or eventhelevel whereten-

6The kappastatisticmeasuresthedegreeto which pair-
wiseagreementof coderson a classificationtasksurpasses
what would be expectedby chance;the standarddefinition
of this coefficient is: HJILK�MNK�O
PRQSMNK�T
P�P�U"K�V
QSMNK�T
P�P ,
whereMNK�OWP is theactualpercentageof agreementand MNK�T
P
is the expectedpercentageof agreement,averagedoverall
pairsof assignments.Severaladjustmentsin thecomputation
of thekappacoefficientweremadenecessaryby thepossible
assignmentof multiplesensesfor eachverbin aLevin+class,
sincewithoutprior knowledgeof howmanysensesareto be
assigned,thereis nobasison which to computeMNK�T
P .



tative conclusionsmay be drawn( XGY[Z]\_^ \
XG` ) (Carletta,1996), (Krippendorff, 1980). On
theotherhand,if theautomaticassignmentsagree
with humancodingatlevelscomparableto thede-
greeof agreementamonghumans,it maybeused
to identify currentassignmentsthat needreview
andtosuggestnewassignmentsfor consideration.

In addition, thereareconsistencychecksthat
can be mademoreeasily by the automaticpro-
cessthanby hand.For example,thesame-synset
assumptionis much more easily enforcedauto-
matically thanmanually. When this assumption
is implementedfor the2756sensesin thetraining
set,another967senseassignmentsaregenerated,
only 131of which wereactuallyassignedmanu-
ally. Similarly, whensucha premiseis enforced
on the entirety of the lexical databaseof 13452
assignments,another5059senseassignmentsare
generated.If thesame-synsetassumptionis valid
andif thesensesassignedin thedatabaseareac-
curate,thenthehumantagginghasa recallof no
morethan73%.

Becauseawordsensewasassignedevenif only
onecoderjudgedit to apply, humancodinghas
beentreatedashavingaprecisionof 100%.How-
ever, someof thesolojudgmentsarelikely tohave
beenin error. To determinewhat proportionof
suchjudgmentswerein realityprecisionfailures,
arandomsampleof 50WordNetsensessupported
by only oneof thetwo original coderswasinves-
tigatedfurtherby a teamof threejudges. In this
round,judgesratedtheWordNetsensesassigned
to theverbentriesasfalling into oneof threecate-
gories:definitelycorrect,definitelyincorrect,and
arguablewhethercorrect.As it turnedout, if any
oneof thejudgesrateda sensedefinitelycorrect,
anotherjudge independentlyjudgedit definitely
correct;this accountsfor 31 instances.In 13 in-
stancestheassignmentswerejudgeddefinitelyin-
correctby at leasttwo of thejudges.No consen-
suswasreachedontheremaining6 instances.Ex-
trapolatingfromthissampleto thefull setof judg-
mentsin thedatabasesupportedbyonlyonecoder
leadstoanestimatethatapproximately1725(26%
of 6636solojudgments)of thosesensesareincor-
rect.Thissuggeststhattheprecisionof thehuman
codingis approximately87%.

Theupperboundfor this task,assetby human
performance,is thus73% recall and87% preci-

sion. The lower bound,basedon assigningthe
WordNetsensewith thegreatestprior probability,
is 38%recalland62%precision.

5 Mapping Strategies

Recent work (Van Halteren et al., 1998) has
demonstratedimprovementin part-of-speechtag-
ging when the outputsof multiple taggersare
combined. When the errorsof multiple classi-
fiersarenot significantlycorrelated,theresultof
combiningvotesfrom a setof individual classi-
fiers often outperformsthe bestresult from any
singleclassifier. Usingavotingstrategyseemses-
peciallyappropriatehere:Themeasuresoutlined
in Section3 averageonly 41%recallonthetrain-
ing set,but thesensespickedout by their highest
valuesvary significantly.

The investigationsundertakenusedboth sim-
ple and aggregatevoters, combinedusing var-
ious voting strategies. The simple voterswere
the 7 measurespreviouslyintroduced.7 In addi-
tion, threeaggregatevotersweregenerated:(1)
theproductof thesimplemeasures(smoothedso
that zero valueswouldn’t offset all other mea-
sures);(2) the weightedsumof the simplemea-
sures,with weightsrepresentingthepercentageof
thetrainingsetassignmentscorrectlyidentifiedby
thehighestscoreof thesimpleprobabilities;and
(3) themaximumscoreof thesimplemeasures.

Using thesedata, two different typesof vot-
ing schemeswereinvestigated.Theschemesdif-
fer most significantly on the circumstancesun-
der which a voter castsits vote for a WordNet
sense,thesizeof thevotecastby eachvoter, and
the circumstancesunderwhich a WordNetsense
wasselected.We will referto thesetwo schemes
asMajority Voting SchemeandThresholdVoting
Scheme.

5.1 Majority Voting Scheme

Althoughwe do not know in advancehow many
WordNetsensesshouldbeassignedto anentryin
the lexical database,we assumethat, in general,
thereis atleastone.In linewith thisintuition,one
strategywe investigatedwasto havebothsimple
andaggregatemeasurescastavotefor whichever

7Only6measures(includingthesemanticsimilaritymea-
sure)weresetout in theearliersection;themeasurestotal 7
becauseIndv frameprobabilityisusedin twodifferentways.



sense(s)of averbin asemanticclassreceivedthe
highest(non-zero)value for that measure. Ten
variationsaregivenhere:

a PriorPr ob: Prior Probability of WordNet
senses

a SemSim:SemanticSimilarity

a SimpleProd: Productof all simplemeasures

a SimpleWtdSum: Weightedsumof all sim-
plemeasures

a MajSimpleSgl: Majority voteof all (7) sim-
plevoters

a MajSimplePair: Majority vote of all (21)
pairsof simplevoters8

a MajAggr: Majority voteof SimpleProdand
SimpleWtdSum

a Maj3Best: Majority voteof SemSim,Sim-
pleProd,andSimpleWtdSum

a MajSgl+Aggr: Majority vote of MajSim-
pleSglandMajAggr

a MajPair+Aggr: Majority vote of MajSim-
plePairandMajAggr

Table2 givesrecallandprecisionmeasuresfor
all variationsof thisvotingscheme,bothwith and
without enforcementof thesame-synsetassump-
tion. If we usetheproductof recallandprecision
asa criterionfor comparingresults,thebestvot-
ing schemeis MajAggr, with 58%recalland72%
precisionwithoutenforcementof thesame-synset
assumption.Notethatif thesame-synsetassump-
tion is correct,thedropin precisionthataccompa-
nies its enforcementmostly reflectsinconsisten-
cies in humanjudgmentsin the training set; the
true precisionvaluefor MajAggr afterenforcing
the same-synsetassumptionis probablycloseto
67%.

Of thesimplevoters,only PriorProbandSem-
Simareindividuallystrongenoughtowarrantdis-
cussion. Although PriorProbwasusedto estab-
lish our lower bound,SemSimprovesto be the

8A paircastavotefor asenseif, amongall thesensesof a
verb,aspecificsensehadthehighestvaluefor bothmeasures.

Variation W/O SS W/ SS
R P R P

PriorProb 38% 62% 45% 46%
SemSim 56% 71% 60% 55%

SimpleProd 51% 74% 57% 55%
SimpleWtdSum 53% 77% 58% 56%
MajSimpleSgl 23% 71% 30% 48%
MajSimplePair 38% 60% 45% 43%

MajAggr 58% 72% 63% 53%
Maj3Best 52% 78% 57% 57%

MajSgl+Aggr 44% 74% 50% 54%
MajPair+Aggr 49% 77% 55% 57%

Table2: Recall(R) andPrecision(P) for Major-
ity Voting Scheme,With andWithout theSame-
Synsetassumption

strongervoter, bestedonly by MajAggr (thema-
jority voteof SimpleProdandSimpleWtdSum)in
voting thatenforcesthesame-synsetassumption.
BothPriorProbandSemSimprovidebetterresults
thanthemajority voteof all 7 simplevoters(Ma-
jSimpleSgl)andthe majority voteof all 21 pairs
of simplevoters(MajSimplePair).Moreover, the
inclusionof MajSimpleSglandMajSimplePairin
a majority vote with MajAggr (in MajSgl+Agr
andMapPair+Aggr, respectively)turn in poorer
resultsthanMajAggr alone.

The poor performanceof MajSimpleSgland
MajSimplePairdo not point, however, to a gen-
eral failure of the principle that multiple voters
arebetterthanindividualvoters.SimpleProd,the
productof all simplemeasures,andSimpleWtd-
Sum, the weightedsum of all simplemeasures,
providereasonablystrongresults,anda majority
voteof thebothof them(MajAggr) givesthebest
resultsof all. Whentheyarejoinedby SemSimin
Maj3Best,theycontinueto providegoodresults.

Thebottomline is thatSemSimmakesthemost
significantcontributionof anysinglesimplevoter,
while theproductandweightedsumsof all simple
voters,in concertwith eachother, providethebest
resultsof all.

5.2 ThresholdVoting Scheme

The secondvoting strategyfirst identified, for
eachsimpleandaggregatemeasure,thethreshold
valueatwhich theproductof recallandprecision



Variation R P
AutoMap+ 61% 54%
AutoMap- 61% 54%

Triples 63% 52%
Combo 53% 44%

Combo&Auto 59% 45%

Table3: Recall(R) andPrecision(P) for Thresh-
old VotingScheme

scoresin the training sethasthe highestvalueif
that thresholdis usedto selectWordNetsenses.
Duringthevoting,if aWordNetsensehasahigher
scorefor ameasurethanits threshold,themeasure
votesfor thesense;otherwise,it votesagainstit.
Theweightof themeasure’svoteis theprecision-
recallproductat the threshold.This voting strat-
egyhastheadvantageof takinginto accounteach
individualattribute’sstrengthof prediction.

Five variations on this basic voting scheme
wereinvestigated.In each,senseswereselected
if their vote total exceededa variation-specific
threshold. Table 3 summarizesrecall and pre-
cision for thesevariationsat their optimal vote
thresholds.

In the AutoMap+ variation,Grid andLevin+
probabilitiesabstainfrom voting whentheir val-
ues are zero (a common occurrence,because
of data sparsity in the training set); the same-
synsetassumptionis automaticallyimplemented.
AutoMap- differs in that it disregardsthe Grid
andLevin+ probabilitiescompletely. TheTriples
variation placesthe simple andcompositemea-
suresinto threegroups,the threewith the high-
est weights, the threewith the lowest weights,
and the middle or remainingthree. Voting first
occurswithin the group,andthe group’s vote is
broughtforwardwith a weightequalingthesum
of the groupmembers’weights. This variation
also addsto the vote total if the sensewas as-
signedin thetrainingdata.TheCombovariation
is like Triples, but ratherthanusingthe weights
andthresholdscalculatedfor thesinglemeasures
from the training data, this variation calculates
weightsandthresholdsfor combinationsof two,
three,four, five,six,and,sevenmeasures.Finally,
theCombo&Auto variationaddsthesame-synset
assumptionto thepreviousvariation.

Although not evident in Table 3 becauseof
rounding,AutoMap-hasslightlyhighervaluesfor
both recall and precisionthan doesAutoMap+,
givingit thehighestrecall-precisionproductof the
thresholdvoting schemes.This suggeststhat the
Grid andLevin+ probabilitiescouldprofitablybe
droppedfrom furtheruse.

Of the more exotic voting variations,Triples
votingachievedresultsnearlyasgoodastheAu-
toMap voting schemes,but the Comboschemes
fell short, indicatingthat weightsandthresholds
arebetterbasedon singlemeasuresthancombi-
nationsof measures.

6 Conclusionsand Futur e Work

Thevotingschemesstill leaveroomfor improve-
ment,asthebestresults(58%recalland72%pre-
cision,or, optimistically,63%recalland67%pre-
cision) fall shy of the upperboundof 73% re-
call and 87% precisionfor humancoding.9 At
thesametime, theseresultsarefar betterthanthe
lowerboundof 38%recalland62%precisionfor
themostfrequentWordNetsense.

As hasbeentruein manyotherevaluationstud-
ies,thebestresultscomefrom combiningclassi-
fiers (MajAggr): not only doesthis variationuse
a majority voting scheme,but moreimportantly,
the two voterstake into accountall of the sim-
ple voters, in differentways. The next-bestre-
sultscomefromMaj3Best,in whichthethreebest
singlemeasuresvote. We shouldnote,however,
thatthesinglebestmeasure,thesemanticsimilar-
ity measurefrom SemSim,lagsonly slightly be-
hind thetwo bestvotingschemes.

This researchdemonstratesthatcredibleword
sensedisambiguationresults can be achieved
without recourseto contextualdata. Lexical re-
sourcesenrichedwith, for example,syntacticin-
formation,in which someportionof theresource
is hand-mappedto anotherlexical resourcemay
berich enoughto supportsucha task.Thedegree
of successachievedherealsoowesmuchto the
confluenceof WordNet’shierachicalstructureand
SEMCOR tagging,asusedin the computationof
thesemanticsimilarity measure,on theonehand,

9The criteria for the majority voting schemespreclude
theirassigningmorethan2 sensesto anysingledatabaseen-
try. Controlledrelaxationof thesecriteriamayachievesome-
whatbetterresults.



and the classifiedstructureof the verb lexicon,
which providedtheunderlyinggroupingsusedin
thatmeasure,on theotherhand.Evenwhereone
measureyieldsgoodresults,severaldatasources
neededto becombinedto enableits success.
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